Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ACS sustainable chemistry & engineering ; 9(40):13545-13558, 2021.
Article in English | EuropePMC | ID: covidwho-1940333

ABSTRACT

The COVID-19 pandemic resulted in imminent shortages of personal protective equipment such as face masks. To address the shortage, new sterilization or decontamination procedures for masks are quickly being developed and employed. Dry heat and steam sterilization processes are easily scalable and allow treatment of large sample sizes, thus potentially presenting fast and efficient decontamination routes, which could significantly ease the rapidly increasing need for protective masks globally during a pandemic like COVID-19. In this study, a suite of structural and chemical characterization techniques, including scanning electron microscopy (SEM), contact angle, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman were utilized to probe the heat treatment impact on commercially available 3M 8210 N95 Particulate Respirator and VWR Advanced Protection surgical mask. Unique to this study is the use of the synchrotron-based In situ and Operando Soft X-ray Spectroscopy (IOS) beamline (23-ID-2) housed at the National Synchrotron Light Source II at Brookhaven National Laboratory for near-edge X-ray absorption spectroscopy (NEXAFS). The impact of heat recycling procedures on the structural integrity and surface chemistry of the N95 and surgical masks was assessed by a suite of structural and chemical characterization techniques.

2.
ACS Appl Mater Interfaces ; 13(40): 47996-48008, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1440455

ABSTRACT

Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.


Subject(s)
Filtration , Masks , Materials Testing/methods , N95 Respirators , COVID-19/prevention & control , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Polyesters/chemistry , Polypropylenes/chemistry , Porosity , SARS-CoV-2 , Spectrum Analysis, Raman , Wettability , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL